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L. M. Osovsky 

The possibility of designing an adaptive model with 
adjustment according to phase characteristics is dis- 
cussed. The results of simulation and performance of 
a linear, second-order adaptive model are described. 

The recording of frequency characteristics for an experimental in- 
restigation of a prototype requires a large expenditure of time. There- 
lore, frequency characteristics have not found wide application in adap- 
5ve systems with adjustment according to dynamic characteristics .2 
[ndeed, each point of the frequency characteristics is determined in a 
steady-state, and to obtain the entire frequency characteristic it is 
iecessary, strictly speaking, to conduct an infinite number of experi- 
nents at various frequencies. 

However, the practical number of such experiments is limited. It 
L S  known that if an object is described by the minimum-phase transfer 
'unction 

~ _*---____-__ 
rn 

1 + 2 bjp' 
j=1 

w(Pj*--k R 9 

1 + 2 
i-l 

There b, # 0, an # 0, the minimum number of points required for deter- 
lining the frequency characteristics (real and imaginary) is equal to 
T = 1/2 (n + m) (Refs. 2, 3). 
iethods for taking the frequency characteristics at high interference 
.eve1 is discussed in Reference 4. In the present article, it is . 

The possibility of using correlation 

-Translation of "Lineynyye Samonsatraivayushchiyesya Modeli s Nastroykog 
IO fazovym Kharakteristikam" from "Avtomatika I Telemekhanika" (Automa- 
;ion and Telemechanics), Izdatel 'stvo Akademii Nauk SSSR, XXIV, No. 2, 
~963.  
)The material relative to the use of frequency characteristics in adap- 
xive systems with adjustment according to dynamic characteristics is 
-ather fully repre se-~t-~~-..~.n_..~~~l-) . 
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?reposed to apply this method to simultaneously obtain the necessary nux 
3er of points representing the frequency characteristics. This substan- 
tially reduces the time necessary to take down the frequency character- 
istics and makes possible a wider utilization of well-known frequency 
nethods in adaptive systems with adjustment according to dynamic char- 
teristics. This is particularly true for adaptive models (Ref. ?):\ 

In using the frequency characteristics in linear adaptive models, 1 
it is proposed to describe the simulated object by a transfer function 
(1). 
istics of the prototype (for example bj, a.) are adjusted from the dis- 

agreement of the phase characteristics of the prototype and model at a 
sufficiently large number of points. The coefficient k is adjusted fron 
m y  one point of the amplitude characteristic. 

The coefficients which do not depend on the statistical character- 
1 

The present article is devoted to the theoretical and experimental 
investigation associated with the selection of the controlled parameter: 
of an adaptive linear model according to phase characteristics by apply- 

ing test signals of the type R = Ro + 2 Rksinakt, where N is the number 

Df points sufficient to determine the phase characteristic. 

-1v . 

i=l 

1. 
Df the Proposed Adaptive Model 

Formulation of the Problem for the Theoretical Investigation 

We take not one criterion, Q,of dissimilarity between prototype ani - model, but a series of individual criteria, Q = (Ql, ..., Qi ,..., $) 

(Ref. 5). 

We select the individual criteria in the following manner: 

Qi = ~ p o  (ai) ~ P M  (ai), ( 2  

vlThere 9 

3t the point 

3f the model at the point u = ui. 

(wi) is the value of the phase characteristic of the prototype 
0 

= ai, and $M (mi) is the value of the phase characteristi 

'The term "linear adaptive model" indicates that the simulated object i: 
-.- liner(Ref.53; --_- _--___ _I_---- -I- 
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For the sake of simplicity we shall limit ourselves to linear pro- 

otypes whose dynamics can be described by the transfer function of the 
ollowing form : 

.. .. 

The model of the prototype w i l l  be described in the same way: 

It is necessary to find out whether we can determine single values 
or the dissimilarities between the parameters of the prototype and mode 
rom sufficiently small values of discrepancy in phase characteristics 
n a sufficient number of points. 

.. Determination of the Dissimilarity in the Coefficients of the 
ransfer Function of the Prototype and Model from Known Sufficiently 
m a l l  Values of Discrepancy in the Phase Characteristics at a 
ufficient Number of Points 

The expression for the individual criteria (2) can be written in 

here Acb(wi) is 

he form: 

(: 
Arp (ai) = - arc tg - 

I 

he difference in phases between the vectms and 

t is known that 

4=1 



For regulated parameters of the model, we take the coefficients 
1 M 
of the polynomial operator Dn(p) and designate by Aa 

1 cl 
!tween the parameters of the prototype a 

the discrepancy 
0 and the regulated parameters 
q 

M 
cl q 

the model a . We shall assume that Aa is sufficiently small. Takin 

lis into account we break down the phase characteristic of the prototyp 

into a power series of Aa and limit ourselve v; hi) 
bo (wi) = - arc tg 7 

I the terms of the first approximation: 
q un (ai) 

ibstituting (6) into (3) and taking into account (4) and (?), we obtain 

. Expression (7) represents a system of linear equations with respect 
) Aa and Aa 2q 2q-1. 

In order to determine the increments in coefficients Aa2q-l, Aa 
2g 

Le to A@(oi) (i = 1, 2,. . . , N), it is necessary to know the discrepanc 

L the phase characteristics of the prototype and model A@(wi) at n 

)ints; i.e., N = n. 
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Let us write the system of linear equations (7) in mat-m: 

shere 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

A sufficient condition for determining\[Aa,ll frodl A@,ll is that the 

natrix IIAn[l not be singular. 

lAnll is almost always not singular. 

?or the case when the numerator of the transfer function of the prototy 
it not equal to unity,the dissimilaritybetween the parameters of the 
?rototype and model is also almost always determined as single-valued b 
;he discrepancy between the phase characteristics of the prototype and 
node1 in a sufficient number of points. 

In Appendix I it is shown that the matrix 

In Appendix 11, it is shown that 

3. 
if Second Order 

The Description of the Operation of a Linear Adaptive Model 

As described above, in order to obtain simultaneously a sufficient 
lumber of points for the phase characteristics of the prototype and 
nodel, we may apply a correlation method for recording phase characteri 
;ics (the method of the zero phase (Ref. 4)). The method of the zero 
?base is based on the following relation. If we have two signals, 
F ( t )  = D cos (ot + a )  and x(t) = B sin (ot + 0)  + n(t), where n(t) is a 
stationary random function (interference) with a mathematical expecta- 
tion, equal to zero, it is easy to find that: 

. -  
T 

( 
0 .  _-- - ---_̂ ----..- -I - - 

1 f (t)  2 ( t )  d t  = T D B  sin (6 - a), 
T-rco 
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Figure 1. Schematic of an Automatic Control System 
for Determining the Phase at Fixed Frequency 

dhere 'tfx is the value of the mutual correlation function at the point 

t = 0 .  From relationship(9) it follows that by selecting a value of a 
Cor which 'tfX = 0 we can determine the unknown phase shift ( 0  = a ) .  We 

iote that in reference (4) it is assumed that 0 will be selected manual 
m d  the generation of the required number of points will be carried out 
by a successive repetition of experiments at various frequencies. How- 
3ver it is possible to use a system of automatic control for this pur- 
pose since Tfx (e - a )  represents a monotonic function of e - a over a 

sufficiently large interval. This function becomes equal to zero when 
3 = a and it is possible to simultaneously obtain a sufficient number o 
points of the phase characteristic. It is not difficult to convince 
sneself that this is possible. Indeed, if we let 

N-1 

j n (t> = n1 (t> + R: + 2 & sin 
I k=l 

Jhere nl(t) is a stationary random function with mathematical expecta- 

tion equal to zero, w # wk, and N is a sufficient number of points of 
the phase characteristic, then the relationship (9) becomes valid, sincl 

rn 

The principle of operation of the proposed system of automatic 
Zontrol is clarified by the schematic shown on Figure 1. The signals 
x(t) = B sin (wt + 0 )  + n(t) and f(t) = D cos (ut + a )  are fed into the 
inputs 1 and 2 of the multiplication circuit MC. The voltage taken fro 
the integrator output is proportional t o  the quantity a. 
by varying the time constant of the phase-shift network PSN. In the 
xL.aki.mmga$.aia,-.xhenAhe ~ ~ s - t a n t l ~ t " - ~ t - t h ~ ~ ~ ~ - t Q - t h ~ - - . -  

It is varied 
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integrator is equal to zero, the value of the dc voltage component at 
the output will determine the phase shift a = 6 ,  measured with respect 
to some reference quantity which is proportional to the voltage u,. 

Figure 2. Schematic of a Linear Adaptive Model of the 
Second Order 

The application of the phase-shift network makes it possible to va: 
the phase a without varying the amplitude D (Ref. 6). 

Later we shall introduce one of the possible variations of equip- 
ment f o r  an adaptive model with adjustment according to phase character, 
istics. Let us clarify the operation of such an adaptive model by usin( 
an example in which the prototype is described by a transfer function 0: 

the ;second order: 

( 10 

0 2 0  where a2 = 0.09 sec , a1 = 0.3 sec. 

Figure 2 shows a schematic of an adaptive model having analog cir- 
cuits and connected to the prototype B which is connected with regulato: 
A. The model is continuously fed with a test signal: 

2 

u (t) = 2 RX sin ukt, 
X = l  

. . . . . . . " , . r  i l  . ... . . . ' ..~ . 
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rhere w /2x = 0.5 cycles, w - / F O . l  cycles, R 

volts.  

= 20 volts, and R2 = 7: 
2 1 1 

The adaptive model consists of three blocks: block 1 shows the con- 
M M 
and a1 ,rolled model of the prototype with controllable parameters a2 

rhich realizes an equation of the same form as (10); block 2 shows the 
,ystems which watch for the variation in the phase-shifts of the har- 
ionic test signals at the output of the prototype; and block 3 shows a 
.evice which determines the discrepancy in the phase-shifts between the 
larmonic test signals at the prototype and model outputs and, from these 

!iscrepancies, controls the parameters a2 
M M 
and a1 . 

The frequencies CJ and w were selected theoretically in such a waj 1 2 
I ;hat the matrix A see Ref. 8) is close to the diagonal. In con- 

M M II 211 ( 
'ormity with this, channels for the adaptation of parameters a 

Figure 2) are constructed. 

and a-- 
2 1 

1. Simulation of the Adaptive Model 

The simulation of the adaptive model was concerned with three 
woblems . 

M3=MC 

Figure 3. Schematic Diagram Showing the Simulation of a Linear 
Adaptive Model of the Second Order 

'This situation in the present case reduces by a factor of two the erroi 
.n the determination of the parameters of the prototype associated with 
:rrors in the measurement.f.~p~a.~e (instrument errors 1. 
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example for simultaneously obtaining, at a sufficient number of points, 
(in this case, at two points) the discrepancy in the phase characteris- 
tics of the prototype and model. I "  I j  

1 
B. The problem of verifying the theoretical premises regarding the 

autonomy of the adaptiveness of the parameters of the model in the case 
when the discrepancy values in the parameters of the prototype and model 
are substantially greater than the values which are assumed during the 
theoretical consideration. 

1 
1 1  

i 
/accuracy and speed of determining the parameters of the prototype. 

C. The problem of studying the possible limitations placed on the 

I 
If we assume that the phase-shift of the harmonic test signals at 

the output of the prototype, produced by the variation in tihe parameters/ 
of the prototype and regulator, vary within small limits (*loo), then 
for simulation purposes the general scheme of the adaptive model (see 
Figure 2) can be simplified. 
tive model, block 2 is omitted. 

1 1 
I 1 
I I Therefore, in the simulation of the adap- 

Then the prototype B and regulator A a1 

imitated by certain fixed values of phase-shifts (5 = (5O(w,) and 

1 (52 = i$ (,(,,?), and it is assumed that the parameters of the prototype 
remain fixed while the parameters of the model change with time (see 
Figure 3). 

l o  1 

In the methodology of the experiment, the values of the parameters 
of the model receive a step-like deviation from the values of the param- 
eters of the prototype and there is observed a process of convergence of 
the model's parameters to the prototype's parameters. This deviation is 
realized by varying the voltages, Au, and Au 

the adaptive model is in a steady state. 

(see Figure 3) at which 2' 

From the results obtained we can .cnnclude that: i 
1. The correlation method makes it possible, in principle, to 

btain simultaneously at two points the value of the discrepancy in the 
characteristics of the prototype and model with an accuracy which 

' s  acceptable for engineering problems. 
'f the convergence of the parameters of the model to the parameters of 
he prototype (see Figure 4). 

This follows from the very fact 

M M 
1 2. The adaptiveness of parameters a2 and a is practically autono- 

,ous within a large range of initial discrepancies in the parameters 
bf the prototype and model (230% from the fixed values of parameters 

- . - - - ~ -  

I 
i-"- ---l.lllll---. --____1 
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2 1 

L2.' 
M t1) during negative and positive step-like deviations Au 

lot change the values of parameter a: (or aM) (see Figure 4). 

(or Au ) does 

2 

T.I.A.=Time 
Instant at 
which the 
Disturbance 
is applied 

M 
2 

Figure 4. a. Behavior of a During a Step-Like Deviation of the 

Voltages Au, and AU b. Behavior of a During the Step-Like 

Deviation of the Voltages Aul and Au . 
M 

2' 1 

2 

3. The accuracy and speed of the adaptiveness of the parameters of 
;he model are limited in the simulation system, first of all by the mag- 
iitude of the amplitude of the variable component which passes through 
;he integrator from the output of the multiplication circuit (Nos. 1 an6 
2) and produces undesirable oscillations of the values of the parameten 

if the model. The greater the quality factor, which determines the spec 1 

if adaptiveness, of the adaptive circuit ~ the ~~ model parameters, 
~~ - ~ ~ 

L The value of the quality factor of the circuits for the adaptiveness of 

iarameters a! and aM is determined respectively by varying the resist- 1 

1- 
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the greater the amplitude of undesirable oscillations of the parameters 
/of the model . The greatest time of adaptiveness is observed for the 1 
/channel al. With an error of 10% (due to undesirable oscillations), the/ 1 
! I 

M 

The fact is that the scheme for the simulation of the adaptive mode! 

time of adaptiveness in this channel is 10 minutes. The replacement of 
the imitation of the prototype by the prototype itself makes it possible 
to estimate that for the same accuracy the time of adaptiveness is de- 
creased by one order. 

0 0 (ol)] and cos [O t + (6 
I 
signals cos [O t + (6 ( 0 2 ) ] .  A direct com- 

1 2 
arison of the outputs of the prototype and model, as shown in Figure 2, 
akes it possible to compensate for the ac components which produce un- 
esirable oscillations in the values of the parameters of the model. 

APPENDIX I 

II An JJ 
._  
[i--- (j+l)] 

z 
here (1(-1) ~2i-(j+i> 11=1 is the matrix line, -'2i-(j+i) is the coeffi- 

ient of polynomial operator D,(P), a2i-(j+l) = o for 2i - (j + 1)(0 an 

i - (j + 1)) n, A .  are arbitrary numbers, Vn(o), Un(o) are the imaginar 

nd real parts of the polynomial operator Dn(p). 
J 

.... .~ .., . .- . . -  . . ... ~ ,__.....,... 
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We shall prove the lemma by the method of total induction. We 

Indeed, 
shall consider two cases: N is an even number and n is an odd number. 
Let n be an odd number. 
on one hand, 

Proposition (11) is valid for n = 1. 

on the other hand, 

Let us assume that proposition (11) is valid for n - 1 and prove 
its validity for n. 

In passing from n - 1 to n, we add the following expression in the 
left side of (ll), 

n-1 [n /21  - 
'U, (0) hnO"-l + (-1) .2 ana, 2 AZq02q--l , 

q=1 

znd in the right side the expression, 

It is easy to convince oneself that expressions (12) and (13) are 
Since (11) is valid for n - 1 (from the proposition) then, identical. 

because expressions (12) and (13.) are identical, it follows that propo- 
sition (11) is valid for n when n is an odd number. 
it is possible to show that (11) is identical when n is an even number. 

In a similar mannei 

Theorem. If the senior determinant of Hurwitz, composed of the 
coefficients of the transfer function, is different from zero, and if 
the number of different frequencies is equal to n, and if the values of 
the frequencies are finite and greater than zero, the matrix 

(see Ref. 8) is not singular. 
IIAnll 

We shall conduct the proof by considering the contrary. Let the 
2 2 imatrix 1[A;lfbe singular. Then, noting that expression U, ( W k )  + vn (Ok) 

I ~ 



_I I ~ - -- - .------.---. '1 s different from zero, we write the 1 ation of the elements of 
he columns of the matrix in the following manner: 

r+1 

here h2q-l and h2q are certain numbers. 

In accordance with the proven lemma, expression (14) is rewritten 
n the form: 

n 

z] b i r p - - l )  =ii 0 (lo = 1, 2, . . . , n), 
i=l 

here 

Expression (15) represents a homogeneous system of linear equations 
5th respect to bi. Its determinant is analogous to the determinant of 

an der Mond, and since from the condition of the theorem all frequencie 
,re different, this determinant is different from zero. It follows fron 
his that a homogeneous system of linear equations (15) has only a 
rivial solution: 

. .  
bi=O ( i=i, 2. ,.., n). 

Taking into account (16) we rewrite (17) in the form: 

If it is equal to zero, then, as we know, the senior determinant of 
urwitz will be equal to zero. This contradicts the condition of the 
heorem. - - _ _ ~ - , - I  -.- -I 

~ .. - . . . . . . . . . . . . . . , . . , ., . . . , . .  . .  . . ,  ~ . .. ,. 
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Jith respect to h j .  It is easy to see that its determinant is equal to 

the senior determinant of Hurwitz. Since according to the condition of 
the theorem the senior determinant of Hurwitz is not equal to zero, the 
system of homogeneous linear equations (18) has only a trivial solution: 
A .  = o ( j  = 1, 2 , . . . ,  n). 
J 

Consequently, the elements of the columns of the matrix llAnII ape 

Linearly independent and the matrix itself is nonsingular'. 
be proved. 

This was to 

It is known that a great number of the senior determinants of Hur- 
sitz, which are equal to zero, have a dimension equal to zero in the 
space of the coefficients of the transfer function. This means that the 
natrix llAnll is almost always nonsingular . 

APPENDIX I1 

Let us consider a linear system whose dynamicg are described by a 
transfer function having a numerator different from unity: 

m 

i=u 

$here an # 0, bm # 0, a. = 1, bo = 1, nam. 

The phase characteristic of the transfer function (19) ha 
following form : 

There 

the 



Expression (20) 

q=o 

can be written in the form: 

for 2s-l-r>n and 2s-l-r<0, a 2s-1-r There br = 0 for r > m ,  a 

For 2s-r>n and 2s-r<0. 

= o  5-r 

The phase characteristic of the transfer function (19) will be equi 
LO the phase characteristic of some transfer function whose numerator i, 
?qual to unity: 

We rewrite (22) in the following manner: 

1 

There ,=1 

( 23 

( 24 

tnd Co = 1, ap-r = 0 for p-r>n and p - r < O ,  br = 0 for r>.m- 

Thus the transfer function (19) can be reduced to an equivalent 
{equivalent in the sense that the phase characteristics are equal) tran 
Fer function with a numerator equal to zero. 

In Appendix I, we obtained conditions under whichAC, can be deter 

n - i r r r e d - f - r e ~ ~ ) - . ~ ~ ~ ~  -z--s+rrgke-v&m--- . ~ e s z - c - u x r d ~  cm-srn%-u 
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fact that N = n + my where N is a sufficient number of points on the 

hase characteristic curve, and the senior determinant of Hurwitz com- 
osed of the coefficients of the transfer function (23) must be differen 
rom zero. 

To determine Aai (i = 1, 2,. . . ,n) and Ab. ( j  = 1, 2,. . . ,m) from ACp 
( P = 1, 2,. . . ,n + m) we write expression (24) in terms of increments: 

J 

F 

( 2 5 )  
*Cp = 2 (--v P,+.Q~-~ + ~ b ~ a ~ - ~ ~  tP = 1, a, . . . , n+m). 

r=o 

Expression (25) represents a system of linear equations with re- 
spect to la andab,, which will have a single-value solution only 

P -r 
its determinant composed of lines 

I (- iIrbr I (-1)"ap-p IF=;,, 

'will be different from zero. 

I 
bo  zero have a dimension equal to zero in the space of the coefficients 
'of the transfer function (19). 

It is known that a large number of determinants (26) which are equa 

This means that generally one can deter- 
ine Aai (i = 1, 2, . . . ,n) and Ab. ( j  = 1, 2,. . . ,m) from AC, ( P = 1, 2.. . 

J 

+ m). But AC, ( P =  1, 2, ..., n + m) can be generally determined from 
1 
A arg W ' (a ) (or what is equivalent, from arg W (ak) (k = 1, 2, . . . , k 

+ m) (see Appendix I). Consequently, Aai (i = 1, 2,. . . ,n) and j: 
b. (j = 1, 2,. . . ,m) are generally determined, from Aarg W (ak) 
(k = 1, 2,...,n + m) as single-valued. 
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